In that year Japanese neurophysiologist Tsuneo Tomita, working at Keio University in Tokyo, first succeeded in getting a microelectrode inside the cones of a fish, with a result so surprising that many contemporaries at first seriously doubted it. In the dark, the potential across the cone membrane was unexpectedly low for a nerve cell: roughly 50 millivolts rather than the usual 70 millivolts. When the cone was illuminated, this potential increased--the membrane became hyperpolarized--just the reverse of what everyone had assumed would happen. In the dark, vertebrate light receptors are apparently more depolarized (and have a lower membrane potential) than ordinary resting nerve cells, and the depolarization causes a steady release of transmitter at the axon terminals, just as it would in a conventional receptor during stimulation. Light, by increasing the potential across the receptor- cell membrane (that is, by hyperpolarizing it), cuts down this transmitter release. Stimulation thus turns the receptors off, strange as that may seem. Tomita's discovery may help us to understand why the optic-nerve fibers of vertebrates are so active in the dark: it is the receptors that are spontaneously active; presumably, many of the bipolar and ganglion cells are simply doing what the receptors tell them to do. In the ensuing decades, the main problems have been to learn how light leads to hyperpolarization of the receptor, especially how bleaching as little as a single molecule of visual pigment, by a single photon of light, can lead, in the rod, to a measureable change in membrane potential. Both processes are now reasonably well understood. Hyperpolarization by light is caused by the shutting off of a flow of ions. In darkness, part of the receptor membrane is more permeable than the rest of the membrane to sodium ions. Consequently, sodium ions continually flow into the cell there, and potassium ions flow out elsewhere. This flow of ions in the dark, or dark current, was discovered in 1970 by William Hagins, Richard Penn, and Shuko Yoshikami at the National Institute of Arthritis and Metabolic Diseases in Bethesda. It causes depolarization of the receptor at rest, and hence its continual activity. As a result of the bleaching of the visual pigment in response to light, the sodium pores close, the dark current decreases, and the membrane depolarization declines--the cell thus hyperpolarizes. Its rate of activity (that is, transmitter release) decreases.